Número primo


Número primo
locución MATEMÁTICAS El que sólo es exactamente divisible por sí mismo y por la unidad.

* * *

El conjunto de los números primos es un subconjunto de los números naturales que engloba a todos los elementos de este conjunto que son divisibles exactamente tan sólo por sí mismos y por la unidad (por convención, el 1 no se considera primo). Los veinte primeros números primos son: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67 y 71.

* * *

Cualquier entero positivo mayor que 1 y divisible exactamente sólo por 1 y por sí mismo.

La secuencia de los números primos empieza 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,..., pero no sigue ningún patrón discernible. Los temas de regularidades e irregularidades en la distribución de los primos están entre las interrogantes más importantes de la teoría de los números. Los primos se conocen al menos desde Pitágoras. Se ha sabido que hay infinitos de ellos a partir de Euclides. Los factores primos de un entero son los números primos cuyo producto es dicho entero (ver teorema fundamental de la aritmética).

Enciclopedia Universal. 2012.

Mira otros diccionarios:

  • Número primo — Un número primo es un número natural mayor que 1, que tiene únicamente dos divisores distintos: él mismo y el 1. Se contraponen así a los números compuestos, que son aquellos que tienen algún divisor natural aparte de sí mismos y del 1. El número …   Wikipedia Español

  • Número primo de Mersenne — Se dice que un número M es un número de Mersenne si es una unidad menor que una potencia de 2. Mn = 2n − 1. Un número primo de Mersenne es un número de Mersenne que es primo, es decir, Mn = 2n − 1, con n primo (no es una condición suficiente que… …   Wikipedia Español

  • Número primo de Wieferich — En matemáticas, un número primo de Wieferich es un número primo p tal que p2 divide a 2p − 1 − 1. Nótese la similitud con el pequeño teorema de Fermat, que afirma que cada número primo p divide a 2p − 1 − 1. Los primeros números primos de… …   Wikipedia Español

  • Número primo ilegal — Un número primo ilegal es un número primo que contiene información cuya posesión o distribución es ilegal según la jurisdicción de un país. Su existencia intenta poner en evidencia inconsistencias en la ley de Estados Unidos conocida como Digital …   Wikipedia Español

  • Número primo fuerte — Este artículo o sección sobre matemáticas necesita ser wikificado con un formato acorde a las convenciones de estilo. Por favor, edítalo para que las cumpla. Mientras tanto, no elimines este aviso puesto el 10 de septiembre de 2009. También… …   Wikipedia Español

  • Número primo de Wall-Sun-Sun — En teoría de números, un número primo de Wall Sun Sun o primo de Fibonacci Wieferich es un tipo de número primo, del cual se conjetura que existe, pero a día de hoy, todavía no se conoce ninguno. Un primo p > 5 es definido como un número primo …   Wikipedia Español

  • Número primo de Pierpont — Un número primo de Pierpont es un número primo de la forma para u y v enteros no negativos. Se llaman así en honor al matemático James Pierpont. Se puede demostrar que, si v = 0 y u > 0, entonces u debe ser una potencia de 2, y el número primo …   Wikipedia Español

  • Número primo de Wilson — Un número primo de Wilson o número de Wilson, llamado así en honor al matemático John Wilson, es un tipo de primo p tal que p² divide a (p − 1)! + 1, donde «!» denota la función factorial. Tiene cierta similitud con el teorema de Wilson, el cual… …   Wikipedia Español

  • Número primo de Sophie Germain — Un número primo p es un número de Sophie Germain si 2p+1 también es número primo. Ejemplo: con p=2, 2x2+1=5 que también es un número primo. Los números primos de Sophie Germain recibieron su nombre por la matemática francesa que demostró que el… …   Wikipedia Español

  • Número primo de Mersenne — Se dice que un número M es un número primo de Mersenne si es primo y M+1 es una potencia de 2. Así, 7 es un primo de Mersenne (7 + 1 = 8 = 2³, y 7 es primo), pero 13 no lo es (por no ser 14 una potencia de 2) y 15 tampoco lo es (por no ser un… …   Enciclopedia Universal


Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.